

DESIGN CALCULATIONS FOR GRUBER LIVESTOCK NORTH GDU BARN

PO Box 384 Windom, MN 56101 507-832-8450

Project				Job no.	
Gruber Livestock North GDU				0169)-01A
Calcs for	Calcs for				
	Exterior Pit	Wall Footing			1
Calcs by Calcs date Checked by Checked date				Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025		

FOOTING ANALYSIS

In accordance with ACI318: See attachment for additional ACI-350 Reinforcement Requirements if they differ from those in ACI-318

Tedds calculation version 3.3.11

Summary results

Overall design status; PASS; Overall design utilisation; 0.957

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	2.9			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	1.435	1.5	0.957	Pass

Strip footing details - considering a one foot strip

Length of footing; $L_x = 1$ ft Width of footing; $L_y = 2$ ft

Footing area; $A = L_x \times L_y = 2 \text{ ft}^2$

Depth of footing; h = 10 in Depth of soil over footing; $h_{soil} = 84$ in

Density of concrete; $\gamma_{conc} = 150.0 \text{ lb/ft}^3$

Wall no.1 details

Width of wall; $I_{y1} = 8$ in position in y-axis; $y_1 = 12$ in

PO Box 384 Windom, MN 56101 507-832-8450

Project				Job no.	
Gruber Livestock North GDU				0169	9-01A
Calcs for				Start page no./Re	evision
	Exterior Pit	Wall Footing			2
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

Soil properties

Gross allowable bearing pressure; $q_{allow_Gross} = 1.5 \text{ ksf};$ Density of soil; $\gamma_{soil} = 115.0 \text{ lb/ft}^3$ Angle of internal friction; $\phi_b = 30.0 \text{ deg}$

Design base friction angle; $\delta_{bb} = 30.0 \text{ deg}$ Coefficient of base friction; $\tan(\delta_{bb}) = 0.577$

Footing loads

Self weight; $F_{swt} = h \times \gamma_{conc} = 125 \text{ psf}$ Soil weight; $F_{soil} = h_{soil} \times \gamma_{soil} = 805 \text{ psf}$

Wall no.1 loads per linear foot

Dead load in z; $F_{Dz1} = \textbf{0.8 kips}$ Live load in z; $F_{Lz1} = \textbf{0.3 kips}$ Live roof load in z; $F_{Lrz1} = \textbf{0.5 kips}$ Snow load in z; $F_{Sz1} = \textbf{0.5 kips}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.708)

1.0D + 1.0L (0.791)

1.0D + 1.0Lr (0.874)

1.0D + 1.0S (0.862)

1.0D + 1.0R (0.708)

1.0D + 0.75L + 0.75Lr (0.895)

1.0D + 0.75L + 0.75S (0.886)

1.0D + 0.75L + 0.75R (0.770)

1.0D + 0.6W (0.708)

 $(1.0 + 0.14 \times S_{DS})D + 0.7E (0.807)$

1.0D + 0.75L + 0.75Lr + 0.45W (0.895)

1.0D + 0.75L + 0.75S + 0.45W (0.886)

1.0D + 0.75L + 0.75R + 0.45W (0.770)

 $(1.0 + 0.10 \times S_{DS})D + 0.75L + 0.75S + 0.525E (0.957)$

0.6D + 0.6W (0.425)

 $(0.6 - 0.14 \times S_{DS})D + 0.7E (0.326)$

Combination 14 results: $(1.0 + 0.10 \times S_{DS})D + 0.75L + 0.75S + 0.525E$

Forces on footing per linear foot

Force in z-axis; $F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times (F_{Dz1} - I_{x1} \times I_{y1} \times h_{soil} \times \gamma_{soil}) + \gamma_L \times F_{Lz1} + \gamma_S \times (F_{swt} + F_{soil}) + \gamma_D \times (F_{Dz1} - I_{x1} \times I_{y1} \times h_{soil} \times \gamma_{soil}) + \gamma_L \times F_{Lz1} + \gamma_S \times (F_{swt} + F_{soil}) + \gamma_D \times (F_{Dz1} - I_{x1} \times I_{y1} \times h_{soil} \times \gamma_{soil}) + \gamma_L \times F_{Lz1} + \gamma_S \times (F_{swt} + F_{soil}) + \gamma_D \times (F_{Dz1} - I_{x1} \times I_{y1} \times h_{soil} \times \gamma_{soil}) + \gamma_L \times F_{Lz1} + \gamma_S \times (F_{swt} + F_{soil}) + \gamma_D \times (F_{Dz1} - I_{x1} \times I_{y1} \times h_{soil} \times \gamma_{soil}) + \gamma_L \times F_{Lz1} + \gamma_S \times (F_{swt} + F_{soil}) + \gamma_D \times (F_{swt} + F_{swt} + F_{swt}) + \gamma_D \times (F_{swt} + F_{swt} + F_{swt} + F_{swt}) + \gamma_D \times (F_{swt} + F_{swt} + F_{swt} + F_{swt}) + \gamma_D \times (F_{swt} + F_{swt} + F_{swt}$

 \times F_{Sz1} = **2.9** kips

Moments on footing per linear foot

Moment in y-axis, about y is 0; $M_{dy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (((F_{DZ1} - I_{x1} \times I_{y1} \times h_{soil} \times \gamma_{soil})) \times I_{y1} \times I_{y2} \times I_{y3} \times I_{y4} \times I_{y4}$

 y_1) + $\gamma_L \times (F_{Lz1} \times y_1) + \gamma_S \times (F_{Sz1} \times y_1) = 2.9 \text{ kip_ft}$

Uplift verification

Vertical force; $F_{dz} = 2.87 \text{ kips}$

PO Box 384 Windom, MN 56101 507-832-8450

Project	Job no.				
	0169)-01A			
Calcs for				Start page no./Re	evision
	Exterior Pit	Wall Footing			3
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

PASS - Footing is not subject to uplift

Stability against sliding

Resistance due to base friction; $F_{RFriction} = max(F_{dz}, 0 \text{ kN}) \times tan(\delta_{bb}) = \textbf{1.657} \text{ kips}$

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in y-axis; $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0.000$ in

Strip base pressures

 $\begin{aligned} q_1 &= F_{dz} \times (1 - 6 \times e_{dy} / L_y) / (L_y \times 1 \text{ ft}) = \textbf{1.435} \text{ ksf} \\ q_2 &= F_{dz} \times (1 + 6 \times e_{dy} / L_y) / (L_y \times 1 \text{ ft}) = \textbf{1.435} \text{ ksf} \end{aligned}$

Minimum base pressure; $q_{min} = min(q_1,q_2) = \textbf{1.435} \text{ ksf}$ Maximum base pressure; $q_{max} = max(q_1,q_2) = \textbf{1.435} \text{ ksf}$

Allowable bearing capacity

Allowable bearing capacity; $q_{allow} = q_{allow_Gross} = 1.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.957$

PASS - Allowable bearing capacity exceeds design base pressure

PO Box 384 Windom, MN 56101 507-832-8450

Project		Job no.			
	Gruber Livest	0169)-01A		
Calcs for		Start page no./Re	evision		
	Exterio	r Pit Wall			1
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

RC WALL DESIGN

In accordance with ACI 318-14: See attachment for additional ACI-350 Reinforcement Requirements if they differ from those in ACI-318

Tedds calculation version 1.2.08

Design summary

Overall design status; PASS

Description	Unit	Required	Provided	Utilization	Result
Axial	kips/ft	1.9	3.9	0.480	PASS
Euler load	kips/ft	1.9	104.0	0.018	PASS
Moment	kip_ft/ft	3.9	7.3	0.534	PASS
Shear	kips/ft	2.6	5.2	0.496	PASS

Geometry of wall

Depth of wall; h = 8.00 in Clear cover to reinforcement (both sides); $c_c = 3.00$ in Unsupported height of wall; $l_u = 96.0$ in Effective height factor; k = 2.00

Reinforcement of wall

Numbers of reinforcement layers; $N_1 = 1$ Vertical steel bar diameter number; $D_{ver num} = 5$ Spacing of vertical steel; $s_v = 12.00 in$ $D_{ver} = 0.625 in$ Diameter of vertical steel bar; Horizontal steel bar diameter number; $D_{hor num} = 5$ Spacing of horizontal steel; $s_h = 7.00 in$ Diameter of horizontal bar; $D_{hor} = 0.625 in$ Specified yield strength of reinforcement; $f_v = 60000 \text{ psi}$ Specified compressive strength of concrete; f'c = 4000 psi Modulus of elasticity of bar reinforcement; $E_s = 29 \times 10^6 \text{ psi}$

Modulus of elasticity of concrete; $E_c = 57000 \times f_c^{1/2} \times (1psi)^{1/2} = 3604997 \text{ psi}$

Ultimate design strain; $\epsilon_c = 0.003$ in/in Compression-controlled strain limit $\epsilon_{ty} = 0.002$

Check for minimum area of vertical steel of single layer reinforcement wall to cl. 11.6.1

Gross area of wall per running foot length; $A_g = h \times 12in = 96.000 in^2$ Numbers of vertical bars per running foot length; $N_v = 12in/s_v = 1.000$

Area of vertical steel per running foot length; $A_{st v} = N_v \times (\pi \times D_{ver}^2) / 4 = 0.307 \text{ in}^2$

PO Box 384 Windom, MN 56101 507-832-8450

Project				Job no.	
Gruber Livestock North GDU					9-01A
Calcs for				Start page no./Re	evision
	Exterio	r Pit Wall			2
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

Minimum area of vertical steel required;

 $A_{st \ v \ min} = 0.115 \ in^2$

PASS- Minimum vertical steel check

Check for minimum area of horizontal steel of single layer reinforcement wall to cl. 11.6.1

Gross area of wall per running foot height; $A_g = h \times 12in = 96.000 in^2$ Numbers of horizontal bar per running foot height; $N_h = 12in / s_h = 1.714$

Area of horizontal steel per running foot height; $A_{st_h} = N_h \times (\pi \times D_{hor}^2) / 4 = 0.526 \text{ in}^2$

Minimum area of horizontal steel required; $A_{st\ h\ min}$ = **0.192** in²

PASS- Minimum horizontal steel check

Braced wall slenderness check to 6.2.5

Permissible slenderness ratio; $s_{r_perm} = min(34 + 12 \times (M_{1_act} / M_{2_act}), 40) = 40.0$

Radius of gyration; $r_{min} = 0.3 \times h = 2.40 \text{ in}$ Actual slenderness ratio; $s_{r \text{ act}} = k \times l_u / r_{min} = 80.00$

Wall is braced slender wall

Design loads and moments for wall subjected to shear, axial load and bending

 $\begin{array}{lll} \mbox{Ultimate axial force per running foot;} & \mbox{P_{u_act} = $1.88 kips/ft} \\ \mbox{Ultimate large end moment per running foot;} & \mbox{M_{2_act} = $3.90 kips_ft/ft} \\ \mbox{Ultimate small end moment per running foot;} & \mbox{M_{1_act} = $3.90 kips_ft/ft} \\ \mbox{Ultimate shear force per running foot;} & \mbox{V_{u_act} = $2.60 kips/ft} \\ \end{array}$

Ratio of DL moment to total moment; $\beta_d = 0.900$

Magnified moment for braced slender wall to 6.6.4

Moment of inertia of section; $I_g = (12in \times h^3)/12 = 512.000 in^4$

Euler's buckling load; $P_{c} = (\pi^{2} \times 0.4 \times E_{c} \times I_{g}) / ((1 + \beta_{d}) \times (k \times I_{u})^{2} \times 1 ft) = 104.035 \text{ kips/ft}$

PASS - Euler's buckling load exceeds ultimate axial force

Correction factor for actual to equiv. mmt. diagram; $C_m = 0.6 - (0.4 \times M_{1 act} / M_{2 act}) = 0.200$

$$\begin{split} \text{Moment magnifier;} & \delta_{\text{ns}} = \text{max} (1.0, \, C_{\text{m}} \, / \, (1 \, \text{--} \, (P_{u_act} \, / \, (0.75 \times P_c)))) = \textbf{1.000} \\ \text{Minimum uniaxial moment for slender section;} & M_{2_min} = P_{u_act} \times (0.6 \text{ in} + 0.03 \times \text{h}) = \textbf{0.132} \text{ kip_ft/ft} \end{split}$$

Magnified uniaxial moment; $M_c = \delta_{ns} \times max(M_{2_min}, M_{2_act}) = 3.900 \text{ kip_ft/ft}$ Axial load capacity of single

layer reinforcement wall subjected to bending

 c/d_t ratio; r = 0.140

Effective cover to reinforcement; $d' = c_c + (D_{\text{ver}}/2) = \textbf{3.312} \text{ in}$ Depth of tension steel; $d_t = h - d' = \textbf{4.688} \text{ in}$ Depth of NA from extreme compression face; $c = r \times d_t = \textbf{0.656} \text{ in}$

Factor of depth of compressive stress block; β_1 = **0.850**

Depth of equivalent rectangular stress block; $a = min((\beta_1 \times c), h) = 0.558$ in Strain in 'tension' reinforcement; $\epsilon_s = \epsilon_c \times (1 - d_t / c) = -0.018429$ f_s Stress in 'tension' reinforcement; $f_s = max(E_s \times \epsilon_s, -f_y) = ;-60000.0$; psi Compression force in concrete; $C_c = 0.85 \times f'_c \times a \times 12in/1ft = 22.759$ kips/ft

Area of vertical tension steel per running foot; $A_s = A_{st \ v} = 0.307 \text{ in}^2$

Force in 'tension' steel; $T_s = A_s \times f_s/1 ft = -18.408 \text{ kips/ft}$ Nominal axial load strength; $P_n = C_c + T_s = 4.351 \text{ kips/ft}$

Strength reduction factor; $\phi = 0.9 = 0.9$

Ultimate axial load carrying capacity of wall; $P_u = \phi \times P_n = 3.916 \text{ kips/ft}$

PO Box 384 Windom, MN 56101 507-832-8450

Project					Job no.	
Gruber Livestock North GDU					0169)-01A
Calcs for	Calcs for				Start page no./Re	evision
		Exterio	r Pit Wall			3
Calcs by		Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ		7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

Check for axial load capacity of wall

PASS- Wall is safe in axial loading

Bending capacity of single layer reinforcement wall

Centroid of wall; $y = h \times 0.5 = 4.000$ in

Nominal moment strength; $M_n = C_c \times (y - 0.5 \times a) - T_s \times (d_t - y) = \textbf{8.112 kip_ft/ft}$

Ultimate moment strength capacity of wall; $M_u = \phi \times M_n = 7.301 \text{kip_ft/ft}$

Check for uniaxial bending capacity of wall

Wall is safe for bending

Check for shear capacity of wall subjected to shear, axial load and bending cl. 22.5

Strength reduction factor; $\phi_V = 0.75$

Effective cover to reinforcement; $d' = c_c + (D_{ver}/2) = \textbf{3.312} \text{ in}$

Depth of tension steel; $d_t = h - d' = \textbf{4.688} \text{ in}$

Factored moment for axial compression; $M_m = M_{2_act} - \left(P_{u_act} \times \left((4 \times h) - d_t\right) / \left(8 \times 12in\right) \times 1ft\right) = \textbf{3.365 kips_ft/ft}$

Shear force capacity of wall; $V_{c1} = ((1.9 \times \lambda \times \sqrt{(f_c \times 1psi)} \times d_t \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 12in) / 1ft) + (2500 \text{ psi} \times A_s / 1 \text{ ft} \times 1$

 $min(1,(V_{u_act} \times d_t / M_m))) = 6.991 kips/ft$

Maximum shear force resisting capacity of wall; $V_{max} = (3.5 \times \lambda \times \sqrt{(f'_c \times 1psi)} \times h \times 12in \times \sqrt{(1kips / ft^3 + P_{u_act} / (500 \times A_g))})$

 $\times \sqrt{(1 \text{ft / 1kips})} = 21.310 \text{ kips/ft}$

Shear force resisting capacity of wall; $\phi V_c = \phi_V \times min(V_{c1}, V_{max}) = 5.243 \text{ kips/ft};$

PASS- Wall is safe in shear force

PO Box 384 Windom, MN 56101 507-832-8450

Project		Job no.			
Gruber Livestock North GDU				0169	9-01A
Calcs for	Calcs for				
	Pit Divide	Wall Footing			1
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

FOOTING ANALYSIS

In accordance with ACI318: See attachment for additional ACI-350 Reinforcement Requirements if they differ from those in ACI-318

Tedds calculation version 3.3.11

Summary results

Overall design status; PASS; Overall design utilisation; 0.696

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	3.1			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	1.044	1.5	0.696	Pass

Strip footing details - considering a one foot strip

Length of footing; $L_x = 1$ ft Width of footing; $L_y = 3$ ft

Footing area; $A = L_x \times L_y = 3 \text{ ft}^2$

Depth of footing; h = 10 in Depth of soil over footing; $h_{soil} = 0$ in

Density of concrete; $\gamma_{conc} = 150.0 \text{ lb/ft}^3$

Wall no.1 details

Width of wall; $I_{y1} = 10$ in position in y-axis; $y_1 = 18$ in

PO Box 384 Windom, MN 56101 507-832-8450

Project				Job no.	
	0169	9-01A			
Calcs for				Start page no./Re	evision
	Pit Divide	Wall Footing			2
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

Soil properties

Gross allowable bearing pressure; $q_{allow_Gross} = 1.5 \text{ ksf};$ Density of soil; $\gamma_{soil} = 65.0 \text{ lb/ft}^3$ Angle of internal friction; $\phi_b = 30.0 \text{ deg}$ Design base friction angle; $\delta_{bb} = 30.0 \text{ deg}$ Coefficient of base friction; $\tan(\delta_{bb}) = 0.577$

Footing loads

Self weight; $F_{swt} = h \times \gamma_{conc} = 125 \text{ psf}$

Wall no.1 loads per linear foot

Dead load in z; $F_{Dz1} = \textbf{1.5 kips}$ Live load in z; $F_{Lz1} = \textbf{0.5 kips}$ Live roof load in z; $F_{Lrz1} = \textbf{1.0 kips}$ Snow load in z; $F_{Sz1} = \textbf{0.9 kips}$

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.417)

1.0D + 1.0L (0.528)

1.0D + 1.0Lr (0.639)

1.0D + 1.0S (0.622)

1.0D + 1.0R (0.417)

1.0D + 0.75L + 0.75Lr (0.667)

1.0D + 0.75L + 0.75S (0.654)

1.0D + 0.75L + 0.75R (0.500)

1.0D + 0.6W (0.417)

 $(1.0 + 0.14 \times S_{DS})D + 0.7E (0.475)$

1.0D + 0.75L + 0.75Lr + 0.45W (0.667)

1.0D + 0.75L + 0.75S + 0.45W (0.654)

1.0D + 0.75L + 0.75R + 0.45W (0.500)

 $(1.0 + 0.10 \times S_{DS})D + 0.75L + 0.75S + 0.525E (0.696)$

0.6D + 0.6W (0.250)

 $(0.6 - 0.14 \times S_{DS})D + 0.7E (0.192)$

Combination 14 results: $(1.0 + 0.10 \times S_{DS})D + 0.75L + 0.75S + 0.525E$

Forces on footing per linear foot

Force in z-axis; $F_{dz} = \gamma_D \times A \times F_{swt} + \gamma_D \times (F_{Dz1} - I_{x1} \times I_{y1} \times h_{soil} \times \gamma_{soil}) + \gamma_L \times F_{Lz1} + \gamma_S \times F_{Sz1} = 0.4 \text{ bis a}$

3.1 kips

Moments on footing per linear foot

 $\text{Moment in y-axis, about y is 0;} \qquad \qquad \text{M}_{\text{dy}} = \gamma_{\text{D}} \times A \times F_{\text{swt}} \times L_{\text{y}} / 2 + \gamma_{\text{D}} \times \left(\left(\left(F_{\text{Dz1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(\left(\left(F_{\text{Dz1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(\left(\left(F_{\text{Dz1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(\left(\left(F_{\text{Dz1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(\left(F_{\text{Dz1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(\left(F_{\text{Dz1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(\left(F_{\text{Dz1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(F_{\text{DZ1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(F_{\text{DZ1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(F_{\text{DZ1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(F_{\text{DZ1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(F_{\text{DZ1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(F_{\text{DZ1}} - I_{\text{x1}} \times I_{\text{y1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(F_{\text{DZ1}} - I_{\text{X1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(F_{\text{DZ1}} - I_{\text{X1}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \times \gamma_{\text{soil}} \right) \times y_{1} \right) + \gamma_{\text{L}} \times \left(F_{\text{DZ1}} - I_{\text{L}} \times h_{\text{soil}} \times \gamma_{\text{soil}} \times \gamma_{\text{soil}} \times \gamma_{\text{soil}} \right) \times y_{1} \times y_{1} \times y_{1} \times y_{1} \times y_{2} \times y_{1} \times y_{2} \times y_$

 $(F_{Lz1} \times y_1) + \gamma_S \times (F_{Sz1} \times y_1) = 4.7 \text{ kip_ft}$

Uplift verification

Vertical force; $F_{dz} = 3.131 \text{ kips}$

PASS - Footing is not subject to uplift

PO Box 384 Windom, MN 56101 507-832-8450

Project	Job no.				
	0169	9-01A			
Calcs for	Calcs for				evision
	Pit Divide	Wall Footing			3
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

Stability against sliding

Resistance due to base friction; $F_{RFriction} = max(F_{dz}, 0 \text{ kN}) \times tan(\delta_{bb}) = 1.808 \text{ kips}$

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in y-axis; $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = 0.000$ in

Strip base pressures

$$\begin{split} q_1 &= F_{dz} \times (1 - 6 \times e_{dy} \, / \, L_y) \, / \, (L_y \times 1 \, \, \text{ft}) = \textbf{1.044} \, \, \text{ksf} \\ q_2 &= F_{dz} \times (1 + 6 \times e_{dy} \, / \, L_y) \, / \, (L_y \times 1 \, \, \text{ft}) = \textbf{1.044} \, \, \text{ksf} \end{split}$$

Minimum base pressure; $q_{min} = min(q_1,q_2) = 1.044 \text{ ksf}$ Maximum base pressure; $q_{max} = max(q_1,q_2) = 1.044 \text{ ksf}$

Allowable bearing capacity

Allowable bearing capacity; $q_{allow} = q_{allow_Gross} = 1.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.696$

PASS - Allowable bearing capacity exceeds design base pressure

PO Box 384 Windom, MN 56101 507-832-8450

Project	Job no.				
	0169)-01A			
Calcs for	Calcs for				
	Pit Div	vide Wall			1
Calcs by	Calcs date	Approved by	Approved date		
MPJ	7/22/2025	DJJ	7/22/2025		

RC WALL DESIGN

In accordance with ACI 318-14: See attachment for additional ACI-350 Reinforcement Requirements if they differ from those in ACI-318

Tedds calculation version 1.2.08

Design summary

Overall design status; PASS

Description	Unit	Required	Provided	Utilization	Result
Axial	kips/ft	3.7	11.0	0.332	PASS
Euler load	kips/ft	3.7	203.2	0.018	PASS
Moment	kip_ft/ft	3.9	12.1	0.323	PASS
Shear	kips/ft	2.6	5.9	0.440	PASS

Geometry of wall

Depth of wall; h = 10.00 in Clear cover to reinforcement (both sides); $c_c = \textbf{4.50} \text{ in}$ Unsupported height of wall; $l_u = \textbf{96.0} \text{ in}$ Effective height factor; k = 2.00

Reinforcement of wall

Numbers of reinforcement layers; $N_1 = 1$ Vertical steel bar diameter number; $D_{\text{ver num}} = 5$ Spacing of vertical steel; $s_v = 10.00 in$ Diameter of vertical steel bar; $D_{ver} = 0.625 in$ Horizontal steel bar diameter number; $D_{hor_num} = 5$ Spacing of horizontal steel; $s_h = 6.00 in$ Diameter of horizontal bar; $D_{hor} = 0.625 in$ Specified yield strength of reinforcement; $f_V = 60000 \text{ psi}$ Specified compressive strength of concrete; f'c = **4000** psi $E_s = 29 \times 10^6 \text{ psi}$ Modulus of elasticity of bar reinforcement;

Modulus of elasticity of concrete; $E_c = 57000 \times f_c^{1/2} \times (1psi)^{1/2} = 3604997 \text{ psi}$

Ultimate design strain; $\epsilon_c = 0.003$ in/in Compression-controlled strain limit $\epsilon_{ty} = 0.002$

Check for minimum area of vertical steel of single layer reinforcement wall to cl. 11.6.1

Gross area of wall per running foot length; $A_g = h \times 12in = 120.000 in^2$

PO Box 384 Windom, MN 56101 507-832-8450

Project	Job no.				
	0169	9-01A			
Calcs for				Start page no./Re	evision
	Pit Div	vide Wall			2
Calcs by	Calcs date	Approved by	Approved date		
MPJ	7/22/2025	DJJ	7/22/2025		

Numbers of vertical bars per running foot length; $N_v = 12in/s_v = 1.200$

Area of vertical steel per running foot length; $A_{st_v} = N_v \times (\pi \times D_{ver}^2) / 4 = 0.368 \text{ in}^2$

Minimum area of vertical steel required; $A_{st_v_min} = 0.144 \text{ in}^2$

PASS- Minimum vertical steel check

Check for minimum area of horizontal steel of single layer reinforcement wall to cl. 11.6.1

Gross area of wall per running foot height; $A_g = h \times 12in = 120.000 \text{ in}^2$ Numbers of horizontal bar per running foot height; $N_h = 12in / s_h = 2.000$

Area of horizontal steel per running foot height; $A_{st_h} = N_h \times (\pi \times D_{hor}^2)/4 = 0.614 \text{ in}^2$

Minimum area of horizontal steel required; $A_{st_hmin} = 0.240 \text{ in}^2$

PASS- Minimum horizontal steel check

Braced wall slenderness check to 6.2.5

Permissible slenderness ratio; $s_{r_perm} = min(34 + 12 \times (M_{1_act} / M_{2_act}), 40) = 40.0$

Radius of gyration; $r_{min} = 0.3 \times h = 3.00 \text{ in}$ Actual slenderness ratio; $s_{r \text{ act}} = k \times l_u / r_{min} = 64.00$

Wall is braced slender wall

Design loads and moments for wall subjected to shear, axial load and bending

 $\begin{array}{lll} \mbox{Ultimate axial force per running foot;} & \mbox{$P_{u_act} = 3.65$ kips/ft} \\ \mbox{Ultimate large end moment per running foot;} & \mbox{$M_{2_act} = 3.90$ kips_ft/ft} \\ \mbox{Ultimate small end moment per running foot;} & \mbox{$M_{1_act} = 3.90$ kips_ft/ft} \\ \mbox{Ultimate shear force per running foot;} & \mbox{$V_{u_act} = 2.60$ kips/ft} \\ \end{array}$

Ratio of DL moment to total moment; $\beta_d = 0.900$

Magnified moment for braced slender wall to 6.6.4

Moment of inertia of section; $I_q = (12in \times h^3)/12 = 1000.000 in^4$

Euler's buckling load; $P_c = (\pi^2 \times 0.4 \times E_c \times I_g)/((1+\beta_d)\times(k \times I_u)^2 \times 1ft) = 203.193 \text{ kips/ft}$

PASS - Euler's buckling load exceeds ultimate axial force

Correction factor for actual to equiv. mmt. diagram; $C_m = 0.6 - (0.4 \times M_{1 act} / M_{2 act}) = 0.200$

Moment magnifier; $\delta_{ns} = \max(1.0, C_m / (1 - (P_{u_act} / (0.75 \times P_c)))) = \textbf{1.000}$ Minimum uniaxial moment for slender section; $M_{2 \text{ min}} = P_{u \text{ act}} \times (0.6 \text{ in} + 0.03 \times \text{h}) = \textbf{0.274 kip ft/ft}$

Magnified uniaxial moment; $M_c = \delta_{ns} \times max(M_{2_min}, M_{2_act}) = 3.900 \text{ kip_ft/ft}$ Axial load capacity of single

layer reinforcement wall subjected to bending

 c/d_t ratio: r = 0.191

Effective cover to reinforcement; $d' = c_c + (D_{ver}/2) = \textbf{4.813} \text{ in}$ Depth of tension steel; $d_t = h - d' = \textbf{5.188} \text{ in}$

Depth of NA from extreme compression face; $c = r \times d_t = 0.989$ in

Factor of depth of compressive stress block; β_1 = **0.850**

Depth of equivalent rectangular stress block; $a = min((\beta_1 \times c), h) = \textbf{0.840} \text{ in}$ Strain in 'tension' reinforcement; $\epsilon_s = \epsilon_c \times (1 - d_t / c) = -\textbf{0.012740}$ $f_s \text{ Stress in 'tension' reinforcement;}$ $f_s = max(E_s \times \epsilon_s, -f_y) = ; -\textbf{60000.0}; \text{ psi}$

Compression force in concrete; $C_c = 0.85 \times f'_c \times a \times 12 \text{in}/1 \text{ft} = 34.289 \text{ kips/ft}$

Area of vertical tension steel per running foot; $A_s = A_{st_v} = 0.368 \text{ in}^2$

Force in 'tension' steel; $T_s = A_s \times f_s/1 ft = -22.089 \text{ kips/ft}$ Nominal axial load strength; $P_n = C_c + T_s = 12.200 \text{ kips/ft}$

PO Box 384 Windom, MN 56101 507-832-8450

Project		Job no.			
	0169	9-01A			
Calcs for		Start page no./Re	evision		
	Pit Div	vide Wall			3
Calcs by	Calcs date	Approved by	Approved date		
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

Strength reduction factor; $\phi = 0.9 = 0.9$

Ultimate axial load carrying capacity of wall; $P_u = \phi \times P_n = 10.980 \text{ kips/ft}$

Check for axial load capacity of wall

PASS- Wall is safe in axial loading

Bending capacity of single layer reinforcement wall

Centroid of wall; $y = h \times 0.5 = 5.000$ in

Nominal moment strength; $M_n = C_c \times (y - 0.5 \times a) - T_s \times (d_t - y) = \textbf{13.432 kip_ft/ft}$

Ultimate moment strength capacity of wall; $M_u = \phi \times M_n = 12.088 \text{kip}_ft/ft$

Check for uniaxial bending capacity of wall

Wall is safe for bending

Check for shear capacity of wall subjected to shear, axial load and bending cl. 22.5

Strength reduction factor; $\phi_{V} = 0.75$

Effective cover to reinforcement; $d' = c_c + (D_{ver}/2) = \textbf{4.813} \text{ in}$ Depth of tension steel; $d_t = h - d' = \textbf{5.188} \text{ in}$

Factored moment for axial compression; $M_m = M_{2_act} - \left(P_{u_act} \times \left((4 \times h) - d_t\right) / \left(8 \times 12in\right) \times 1ft\right) = \textbf{2.576 kips_ft/ft}$

Shear force capacity of wall; $V_{c1} = ((1.9 \times \lambda \times \sqrt{(f_c \times 1psi)} \times d_t \times 12in) / 1ft) + (2500 psi \times A_s / 1 ft \times 12in) / 1$

 $min(1,(V_{u_act} \times d_t / M_m))) = 7.882 \text{ kips/ft}$

Maximum shear force resisting capacity of wall; $V_{max} = (3.5 \times \lambda \times \sqrt{(f'_c \times 1psi)} \times h \times 12in \times \sqrt{(1kips / ft^3 + P_{u_act} / (500 \times A_g)))}$

 $\times \sqrt{(1 \text{ft / 1kips})} = 26.679 \text{ kips/ft}$

Shear force resisting capacity of wall; $\phi V_c = \phi_V \times min(V_{c1}, V_{max}) = 5.911 \text{ kips/ft};$

PASS- Wall is safe in shear force

PO Box 384 Windom, MN 56101 507-832-8450

Project	Job no.				
	0169)-01A			
Calcs for	Calcs for				
	Pit Colur	mn Footing			1
Calcs by	Calcs date	Approved by	Approved date		
MPJ	7/22/2025	DJJ	7/22/2025		

FOOTING ANALYSIS

In accordance with ACI318-14: See attachment for additional ACI-350 Reinforcement Requirements if they differ from those in ACI-318

Tedds calculation version 3.3.11

Summary results

Overall design status; PASS; Overall design utilisation; 0.987

Description	Unit	Applied	Resisting	FoS	Result
Uplift verification	kips	13.3			Pass
Description	Unit	Applied	Resisting	Utilization	Result
Soil bearing	ksf	1.48	1.5	0.987	Pass
Description	Unit	Required	Provided	Utilization	Result
Moment, positive, x-direction	kip_ft	2.4	23.6	0.101	Pass
Moment, positive, y-direction	kip_ft	2.4	23.6	0.101	Pass
Shear, one-way, x-direction	kips	2.2	23.1	0.097	Pass
Shear, one-way, y-direction	kips	2.2	21.3	0.105	Pass
Shear, two-way, Col 1	psi	21.596	189.737	0.114	Pass
Min.area of reinf, bot., x-direction	in ²	0.648	0.800		Pass
Max.reinf.spacing, bot, x-direction	in	18.0	10.5		Pass
Min.area of reinf, bot., y-direction	in ²	0.648	0.800		Pass
Max.reinf.spacing, bot, y-direction	in	18.0	10.5		Pass

Pad footing details

Length of footing; $L_x = 3 \text{ ft}$ Width of footing; $L_y = 3 \text{ ft}$

Footing area; $A = L_x \times L_y = 9 \text{ ft}^2$

Depth of footing; h = 10 in Depth of soil over footing; $h_{soil} = 0$ in

Density of concrete; $\gamma_{conc} = 150.0 \text{ lb/ft}^3$

PO Box 384 Windom, MN 56101 507-832-8450

Project		Job no.			
	Gruber Livest	0169)-01A		
Calcs for		Start page no./Revision			
	Pit Colur	nn Footing			2
Calcs by	Calcs date	Approved by	Approved date		
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

Column no.1 details

 $\begin{array}{lll} \mbox{Length of column;} & \mbox{$I_{x1}=12.00$ in} \\ \mbox{Width of column;} & \mbox{$I_{y1}=12.00$ in} \\ \mbox{position in x-axis;} & \mbox{$x_1=18.00$ in} \\ \mbox{position in y-axis;} & \mbox{$y_1=18.00$ in} \\ \mbox{Height of pedestal;} & \mbox{$h_{ped1}=82.00$ in} \\ \mbox{Length of pedestal;} & \mbox{$I_{x,ped1}=14.00$ in} \\ \mbox{Width of pedestal;} & \mbox{$I_{y,ped1}=14.00$ in} \\ \mbox{} \end{array}$

Soil properties

Gross allowable bearing pressure; $q_{allow_Gross} = \textbf{1.5 ksf};$ Density of soil; $\gamma_{soil} = \textbf{63.0 lb/ft}^3$ Angle of internal friction; $\varphi_b = \textbf{30.0 deg}$ Design base friction angle; $\delta_{bb} = \textbf{30.0 deg}$ Coefficient of base friction; $\tan(\delta_{bb}) = \textbf{0.577}$

Footing loads

Self weight; $F_{swt} = h \times \gamma_{conc} = 125 \text{ psf}$

Column no.1 loads

Pedestal self weight; $F_{SWz1} = \textbf{1.4 kips}$ Dead load in z; $F_{Dz1} = \textbf{4.8 kips}$ Live load in z; $F_{Lz1} = \textbf{6.0 kips}$

PO Box 384 Windom, MN 56101 507-832-8450

Project		Job no.			
	Gruber Livest	0169)-01A		
Calcs for		Start page no./Re	evision		
	Pit Colur	nn Footing			3
Calcs by	Calcs date	Approved by	Approved date		
MPJ 7/22/2025 DJJ 7/22/2025				DJJ	7/22/2025

Footing analysis for soil and stability

Load combinations per ASCE 7-16

1.0D (0.542)

1.0D + 1.0L (0.987)

1.0D + 1.0Lr (0.542)

1.0D + 1.0S (0.542)

1.0D + 1.0R (0.542)

1.0D + 0.75L + 0.75Lr (0.876)

1.0D + 0.75L + 0.75S (0.876)

1.0D + 0.75L + 0.75R (0.876)

 $(1.0 + 0.14 \times S_{DS})D + 0.7E (0.618)$

1.0D + 0.75L + 0.75Lr + 0.45W (0.876)

1.0D + 0.75L + 0.75S + 0.45W (0.876)

1.0D + 0.75L + 0.75R + 0.45W (0.876)

 $(1.0 + 0.10 \times S_{DS})D + 0.75L + 0.75S + 0.525E (0.930)$

0.6D + 0.6W (0.325)

 $(0.6 - 0.14 \times S_{DS})D + 0.7E (0.249)$

Combination 2 results: 1.0D + 1.0L

Forces on footing

 $F_{dz} = \gamma_D \times A \times F_{swt} + \gamma_D \times \left(F_{Dz1} + F_{SWz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil}\right) + \gamma_L \times F_{Lz1}$

= **13.3** kips

Moments on footing

 $\text{Moment in x-axis, about x is 0;} \qquad \qquad \text{M}_{\text{dx}} = \gamma_{\text{D}} \times A \times F_{\text{swt}} \times L_{\text{x}} / 2 + \gamma_{\text{D}} \times (((F_{\text{Dz1}} + F_{\text{SWz1}} - I_{\text{x,ped1}} \times I_{\text{y,ped1}} \times I_{\text{soil}} \times \gamma_{\text{soil}}))$

 $\times x_1$) + $\gamma_L \times (F_{Lz1} \times x_1) = 20.0 \text{ kip_ft}$

Moment in y-axis, about y is 0; $M_{dy} = \gamma_D \times A \times F_{swt} \times L_y / 2 + \gamma_D \times (((F_{Dz1} + F_{swz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil}))$

 \times y₁) + γ _L \times (F_{Lz1} \times y₁) = **20.0** kip_ft

Uplift verification

Vertical force; $F_{dz} = 13.32 \text{ kips}$

PASS - Footing is not subject to uplift

Bearing resistance

Eccentricity of base reaction

Eccentricity of base reaction in x-axis; $e_{dx} = M_{dx} / F_{dz} - L_x / 2 = \mathbf{0}$ in Eccentricity of base reaction in y-axis; $e_{dy} = M_{dy} / F_{dz} - L_y / 2 = \mathbf{0}$ in

Pad base pressures

 $\begin{aligned} q_1 &= F_{dz} \times (1 - 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.48} \text{ ksf} \\ q_2 &= F_{dz} \times (1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.48} \text{ ksf} \\ q_3 &= F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.48} \text{ ksf} \\ q_4 &= F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = \textbf{1.48} \text{ ksf} \end{aligned}$

Minimum base pressure; $q_{min} = min(q_1,q_2,q_3,q_4) = \textbf{1.48} \text{ ksf}$ Maximum base pressure; $q_{max} = max(q_1,q_2,q_3,q_4) = \textbf{1.48} \text{ ksf}$

PO Box 384 Windom, MN 56101 507-832-8450

Project		Job no.			
	0169)-01A			
Calcs for	Calcs for				
	Pit Colur	nn Footing			4
Calcs by	Calcs date	Approved by	Approved date		
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

Allowable bearing capacity

Allowable bearing capacity; $q_{allow} = q_{allow_Gross} = 1.5 \text{ ksf}$

 $q_{max} / q_{allow} = 0.987$

PASS - Allowable bearing capacity exceeds design base pressure

FOOTING DESIGN

In accordance with ACI318-14

Tedds calculation version 3.3.11

Material details

Compressive strength of concrete; $f_c = 4000 \text{ psi}$ Yield strength of reinforcement; $f_y = 60000 \text{ psi}$ Compression-controlled strain limit (21.2.2); $\epsilon_{ty} = 0.00200$ Cover to top of footing; $c_{nom\ t} = 2 in$ Cover to side of footing; $c_{nom_s} = 2 in$ Cover to bottom of footing; $c_{nom b} = 3 in$ Concrete type; Normal weight Concrete modification factor; $\lambda = 1.00$ Column type; Concrete

Analysis and design of concrete footing

Load combinations per ASCE 7-16

1.4D (0.058)

1.2D + 1.6L + 0.5Lr (0.114)

1.2D + 1.6L + 0.5S (0.114)

1.2D + 1.6L + 0.5R (0.114)

1.2D + 1.0L + 1.6Lr (0.114)

1.2D + 1.0L + 1.6S (0.114)

1.2D + 1.0L + 1.6R (0.114)

1.2D + 1.6Lr + 0.5W (0.114)

1.2D + 1.6S + 0.5W (0.114)

1.2D + 1.6R + 0.5W (0.114)

1.2D + 1.0L + 0.5Lr + 1.0W (0.114)

1.2D + 1.0L + 0.5S + 1.0W (0.114)

1.2D + 1.0L + 0.5R + 1.0W (0.114)

 $(1.2 + 0.2 \times S_{DS})D + 1.0L + 0.2S + 1.0E (0.114)$

0.9D + 1.0W (0.114)

 $(0.9 - 0.2 \times S_{DS})D + 1.0E (0.114)$

Combination 2 results: 1.2D + 1.6L + 0.5Lr

Forces on footing

 $\text{Ultimate force in z-axis;} \qquad \qquad F_{uz} = \gamma_D \times A \times F_{swt} + \gamma_D \times \left(F_{Dz1} + F_{SWz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil}\right) + \gamma_L \times F_{Lz1}$

= 18.4 kips

PO Box 384 Windom, MN 56101 507-832-8450

Project	Job no.				
	0169)-01A			
Calcs for	Calcs for				
	Pit Colur	nn Footing			5
Calcs by	Calcs date	Approved by	Approved date		
MPJ 7/22/2025 DJJ 7/22/2025				DJJ	7/22/2025

Moments on footing

Ultimate moment in x-axis, about x is 0; $M_{\text{ux}} = \gamma_{\text{D}} \times A \times F_{\text{swt}} \times L_{\text{x}} / 2 + \gamma_{\text{D}} \times (((F_{\text{Dz1}} + F_{\text{SWz1}} - I_{\text{x,ped1}} \times I_{\text{y,ped1}} \times h_{\text{soil}} \times \gamma_{\text{soil}}))$

 $\times x_1$) + $\gamma_L \times (F_{Lz1} \times x_1) = 27.6 \text{ kip ft}$

Ultimate moment in y-axis, about y is 0; $M_{uy} = \gamma_D \times A \times F_{swt} \times L_y / 2 + \gamma_D \times (((F_{Dz1} + F_{SWz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil}))$

 \times y₁) + y_L \times (F_{Lz1} \times y₁) = **27.6** kip ft

Eccentricity of base reaction

Eccentricity of base reaction in x-axis; $e_{ux} = M_{ux} / F_{uz} - L_x / 2 = \mathbf{0} \text{ in}$ Eccentricity of base reaction in y-axis; $e_{uy} = M_{uy} / F_{uz} - L_y / 2 = \mathbf{0} \text{ in}$

Pad base pressures

$$\begin{split} q_{u1} &= F_{uz} \times \left(1 - 6 \times e_{ux} \, / \, L_x - 6 \times e_{uy} \, / \, L_y\right) / \, (L_x \times L_y) = \textbf{2.043} \; \text{ksf} \\ q_{u2} &= F_{uz} \times \left(1 - 6 \times e_{ux} \, / \, L_x + 6 \times e_{uy} \, / \, L_y\right) / \, (L_x \times L_y) = \textbf{2.043} \; \text{ksf} \\ q_{u3} &= F_{uz} \times \left(1 + 6 \times e_{ux} \, / \, L_x - 6 \times e_{uy} \, / \, L_y\right) / \, (L_x \times L_y) = \textbf{2.043} \; \text{ksf} \\ q_{u4} &= F_{uz} \times \left(1 + 6 \times e_{ux} \, / \, L_x + 6 \times e_{uy} \, / \, L_y\right) / \, (L_x \times L_y) = \textbf{2.043} \; \text{ksf} \end{split}$$

Minimum ultimate base pressure; $q_{umin} = min(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{2.043} \text{ ksf}$ Maximum ultimate base pressure; $q_{umax} = max(q_{u1}, q_{u2}, q_{u3}, q_{u4}) = \textbf{2.043} \text{ ksf}$

Shear diagram, x axis (kips)

Moment diagram, x axis (kip_ft)

Moment design, x direction, positive moment

Ultimate bending moment; $M_{u.x.max} = 2.386 \text{ kip } ft$

Tension reinforcement provided; 4 No.4 bottom bars (10.5 in c/c)

Area of tension reinforcement provided; $A_{sx.bot.prov} = 0.8 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1); $A_{s,min} = 0.0018 \times L_y \times h = 0.648 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2); $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement; $d = h - c_{nom_b} - \phi_{x.bot} / 2 = 6.750$ in

Depth of compression block; $a = A_{sx.bot.prov} \times f_y / (0.85 \times f_c \times L_y) = 0.392$ in

Neutral axis factor; $\beta_1 = 0.85$

Depth to neutral axis; $c = a / \beta_1 = 0.461$ in

Strain in tensile reinforcement; $\epsilon_t = 0.003 \times d / c - 0.003 = 0.04089$

PO Box 384 Windom, MN 56101 507-832-8450

Project		Job no.			
	0169)-01A			
Calcs for				Start page no./Re	evision
	Pit Colur	nn Footing			6
Calcs by	Calcs date	Approved by	Approved date		
MPJ	7/22/2025	DJJ	7/22/2025		

Minimum tensile strain(8.3.3.1);

$$\varepsilon_{min} = 0.004 = 0.00400$$

PASS - Tensile strain exceeds minimum required

Nominal moment capacity;

 $M_n = A_{sx.bot.prov} \times f_y \times (d - a / 2) = 26.216 \text{ kip_ft}$

Flexural strength reduction factor;

 $\phi_f = min(max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.005 - \epsilon_{ty}), 0.65), 0.9) = 0.900$

Design moment capacity;

 $\phi M_n = \phi_f \times M_n = 23.594 \text{ kip_ft}$

 $M_{u.x.max} / \phi M_n = 0.101$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, x direction

Ultimate shear force; $V_{u.x} = 2.248 \text{ kips}$

Depth to reinforcement; $d_v = h - c_{nom_b} - \phi_{x.bot} / 2 = 6.75 \text{ in}$

Shear strength reduction factor; $\phi_V = 0.75$

Nominal shear capacity (Eq. 22.5.5.1); $V_n = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} \times L_y \times d_v = 30.737 \text{ kips}$

Design shear capacity; $\phi V_n = \phi_v \times V_n = 23.053$ kips

 $V_{u.x} / \phi V_n = 0.097$

PASS - Design shear capacity exceeds ultimate shear load

Shear diagram, y axis (kips)

Moment diagram, y axis (kip_ft)

Moment design, y direction, positive moment

Ultimate bending moment; $M_{u.y.max} = 2.386 \text{ kip } ft$

Tension reinforcement provided; 4 No.4 bottom bars (10.5 in c/c)

Area of tension reinforcement provided; $A_{sy,bot,prov} = 0.8 \text{ in}^2$

Minimum area of reinforcement (8.6.1.1); $A_{s.min} = 0.0018 \times L_x \times h = 0.648 \text{ in}^2$

PASS - Area of reinforcement provided exceeds minimum

Maximum spacing of reinforcement (8.7.2.2); $s_{max} = min(2 \times h, 18 in) = 18 in$

PASS - Maximum permissible reinforcement spacing exceeds actual spacing

Depth to tension reinforcement; $d = h - c_{nom_b} - \phi_{x,bot} - \phi_{y,bot} / 2 = \textbf{6.250} \text{ in}$ Depth of compression block; $a = A_{sy,bot,prov} \times f_y / (0.85 \times f'_c \times L_x) = \textbf{0.392} \text{ in}$

Neutral axis factor; $\beta_1 = 0.85$

Depth to neutral axis; $c = a / \beta_1 = 0.461$ in

Strain in tensile reinforcement; $\epsilon_t = 0.003 \times d / c - 0.003 = 0.03764$

Minimum tensile strain(8.3.3.1); $\varepsilon_{min} = 0.004 = 0.00400$

PO Box 384 Windom, MN 56101 507-832-8450

	Project	Job no.				
Gruber Livestock North GDU					0169)-01A
Γ	Calcs for	Start page no./Re	evision			
		Pit Colur	mn Footing			7
Γ	Calcs by	Calcs date	Approved by	Approved date		
	MPJ 7/22/2025 DJJ 7/22/2025				DJJ	7/22/2025

PASS - Tensile strain exceeds minimum required

 $M_n = A_{sy.bot.prov} \times f_y \times (d - a / 2) = 24.216 \text{ kip } ft$ Nominal moment capacity;

 $\phi_f = \min(\max(0.65 + 0.25 \times (\epsilon_t - \epsilon_{ty}) / (0.005 - \epsilon_{ty}), 0.65), 0.9) = 0.900$ Flexural strength reduction factor;

Design moment capacity; $\phi M_n = \phi_f \times M_n = 21.794 \text{ kip ft}$

 $M_{u.y.max} / \phi M_n = 0.109$

PASS - Design moment capacity exceeds ultimate moment load

One-way shear design, y direction

Ultimate shear force: $V_{u,v} = 2.248 \text{ kips}$

Depth to reinforcement; $d_v = h - c_{nom_b} - \phi_{x.bot} - \phi_{y.bot} / 2 = 6.25 in$

 $\phi_{V} = 0.75$ Shear strength reduction factor;

 $V_n = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} \times L_x \times d_v = 28.46 \text{ kips}$ Nominal shear capacity (Eq. 22.5.5.1);

Design shear capacity; $\phi V_n = \phi_V \times V_n = 21.345 \text{ kips}$

 $V_{u.y} / \phi V_n = 0.105$

PASS - Design shear capacity exceeds ultimate shear load

Two-way shear design at column 1

Depth to reinforcement; $d_{v2} = 6.5$ in Shear perimeter length (22.6.4); $I_{xp} = 20.500 \text{ in}$ $I_{Vp} = 20.500 \text{ in}$ Shear perimeter width (22.6.4);

 $b_0 = 2 \times (I_{x,ped1} + d_{v2}) + 2 \times (I_{y,ped1} + d_{v2}) = 82.000$ in Shear perimeter (22.6.4);

 $A_p = I_{x,perim} \times I_{y,perim} = 420.250 \text{ in}^2$ Shear area;

Surcharge loaded area; $A_{sur} = A_p - I_{x,ped1} \times I_{y,ped1} = 224.250 in^2$

Ultimate bearing pressure at center of shear area; qup.avg = 2.043 ksf

 $F_{up} = \gamma_D \times (F_{Dz1} + F_{SWz1} - I_{x,ped1} \times I_{y,ped1} \times h_{soil} \times \gamma_{soil}) + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times I_{soil} \times I_{so$ Ultimate shear load;

 F_{swt} - $q_{up.avg} \times A_p = 11.511$ kips

 $v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 psi) = 21.596 psi$ Ultimate shear stress from vertical load;

Column geometry factor (Table 22.6.5.2); $\beta = I_{y,ped1} / I_{x,ped1} = 1.00$

Column location factor (22.6.5.3); $\alpha s = 40$

 $v_{cpa} = (2 + 4 / \beta) \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 379.473 \text{ psi}$ Concrete shear strength (22.6.5.2);

 $v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda \times \sqrt{(f_c \times 1 psi)} = 327.026 psi$

 $v_{cpc} = 4 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 252.982 \text{ psi}$

 $v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 psi$

 $\phi_{V} = 0.75$ Shear strength reduction factor;

 $v_n = v_{cp} = 252.982 \text{ psi}$ Nominal shear stress capacity (Eq. 22.6.1.2);

Design shear stress capacity (8.5.1.1(d)); $\phi v_n = \phi_v \times v_n =$ **189.737** psi

 $v_{ug} / \phi v_n =$ **0.114**

PASS - Design shear stress capacity exceeds ultimate shear stress load

PO Box 384 Windom, MN 56101 507-832-8450

Project				Job no.	
Gruber Livestock North GDU				0169-01A	
Calcs for			Start page no./Revision		
Pit Column Footing				8	
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

4 No.4 bottom bars (10.5 in c/c)

[™]4 Ne:4 bettem bars (10:5 in e/e) (x direction)

PO Box 384 Windom, MN 56101 507-832-8450

Project				Job no.	
Gruber Livestock North GDU				0169)-01A
Calcs for				Start page no./Revision	
Pit Column				1	
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

RC COLUMN DESIGN

In accordance with ACI318-14: See attachment for additional ACI-350 Reinforcement Requirements if they differ from those in ACI-318

Tedds calculation version 2.2.07

Design summary

Description	Unit	Capacity	Applied	Utilization	Result
Axial	kips	243.0	20.6	0.085	-

Applied loads

Ultimate axial force acting on column; $P_{u_act} = 20.64 \text{ kips}$

Ratio of DL moment to total moment; $\beta_d = 0.600$

Geometry of column

Column diameter; h = 14.0 inClear cover to all reinforcement; $c_c = 2.00 in$ Unsupported height of column about x axis; $I_{ux} = 6.8 \text{ ft}$ Effective height factor about x axis; $k_x = 1.00$ Column state about the x axis; Braced Unsupported height of column about y axis; $I_{uy} = 6.8 \text{ ft}$ Effective height factor about y axis; $k_{v} = 1.00$ Column state about the y axis; Braced

Reinforcement of column

Numbers of bars of longitudinal steel; N=6Longitudinal steel bar diameter number; $D_{bar_num}=4$ Diameter of longitudinal bar; $D_{long}=0.500$ in Stirrup bar diameter number; $D_{stir_num}=3$ Diameter of stirrup bar; $D_{stir}=0.375$ in

PO Box 384 Windom, MN 56101 507-832-8450

Project				Job no.	
Gruber Livestock North GDU			0169	9-01A	
Calcs for			Start page no./Revision		
Pit Column				2	
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
MPJ	7/22/2025	DJJ	7/22/2025	DJJ	7/22/2025

Specified yield strength of reinforcement; $f_y = 60000$ psi Specified compressive strength of concrete; $f_c = 4000$ psi Modulus of elasticity of bar reinforcement; $E_s = 29 \times 10^6$ psi

Modulus of elasticity of concrete; $E_c = 57000 \times f_c^{1/2} \times (1psi)^{1/2} = 3604997$ psi

Yield strain; $\epsilon_{y} = f_{y} / E_{s} = \textbf{0.00207}$ Ultimate design strain; $\epsilon_{c} = \textbf{0.003} \text{ in/in}$

Check for minimum area of steel - 10.6.1.1

Gross area of column; $A_g = \pi \times h^2 / 4 = 153.938 \text{ in}^2$

Area of steel; $A_{st} = N \times (\pi \times D_{long}^2) / 4 = 1.178 \text{ in}^2$

Minimum area of steel required; $A_{st_min} = 0.01 \times A_g = 1.539 \text{ in}^2$

Area of reinforcement provided (Ast) is less than the minimum required (Ast_min) therefore apply ACI 318 clause 10.3.1.2

Reduced column area to satisfy min reinft; $A_{g red} = A_{st} / 0.01 = 117.810 in^2$

PASS- Reduced effective area is not less than half gross area

Check for maximum area of steel - 10.6.1.1

Permissible maximum area of steel; $A_{st_max} = 0.08 \times A_g = 12.315 \text{ in}^2$

Ast Ast max, PASS - Maximum steel check

Design of column ties - 25.7.2

Spacing of lateral ties; $s_{v \text{ ties}} = 8.000 \text{ in}$

sv_ties < s PASS

Slenderness check about x axis

Radius of gyration; $r_x = 0.25 \times h = 3.5$ in

Actual slenderness ratio; $s_{rx_act} = k_x \times l_{ux} / r_x = 23.42$

Permissible slenderness ratio; $s_{rx_perm} = min(34 - 12 \times (M_{1x_act} / M_{2x_act}), 40) = 34$

Slenderness effects may be neglected about the X axis

Slenderness check about y axis

Radius of gyration; $r_y = 0.25 \times h = \textbf{3.5} \text{ in}$

Actual slenderness ratio; $s_{ry act} = k_y \times l_{uy} / r_y = 23.42$

Permissible slenderness ratio; $s_{\text{ry_perm}} = \min(34 - 12 \times (M_{1y_act} / M_{2y_act}), 40) = 34$

Slenderness effects may be neglected about the Y axis

Axial load capacity of axially loaded column

Strength reduction factor; $\phi = 0.650$

Area of steel on compression face; $A'_s = A_{st} / 2 = 0.589 \text{ in}^2$ Area of steel on tension face; $A_s = A_{st} / 2 = 0.589 \text{ in}^2$

Net axial load capacity of column; $P_n = 0.8 \times (0.85 \times f'_c \times (A_{g_red} - A_{st}) + f_y \times A_{st}) = 373.787 \text{ kips}$

Ultimate axial load capacity of column; $P_u = \phi \times P_n = 242.961$ kips

PASS: Column is safe in axial loading

,

8" Exterior Pit Wall				
Minimum Flexural Reinforcement				
AC	I-350 Required	Provided		
1. 0.003A _g	0.288 in ² (Total Vertical)	#5's @ 12" O.C.		
2. 200 b _w d/f _y	0.14 in ² (Flexural Only)	$A_s = 0.31 \text{ in}^2$		
3. (3√f' _c /f _y)b _w d	0.13 in ² (Flexural Only)	A _s =0.31 III		
N	1inimum Shrinkage & Temper	ature Steel		
AC	I-350 Required	Provided		
1. 0.005Ag	0.48 in ² (Total Horizontal)	#5's @ 7" O.C.		
1. 0.003Ag		$A_{s} = 0.53 \text{ in}^{2}$		
	10" Pit Divide Wall			
	Minimum Flexural Reinford	cement		
AC	I-350 Required	Provided		
1. 0.003A _g	0.36 in ² (Total Vertical)	#5's @ 10" O.C.		
2. 200 b _w d/f _y	0.23 in ² (Flexural Only)	45 8 @ 10 0.0. A _s =0.37 in ²		
3. (3√f' _c /f _y)b _w d	0.22 in ² (Flexural Only)	A _s =0.37 III		
N	1inimum Shrinkage & Temper	ature Steel		
AC	I-350 Required	Provided		
1 0 0054	0.6 in ² (Total Horizontal)	#5's @ 6" O.C.		
1. 0.005A _g		$A_{\rm s} = 0.62 {\rm in}^2$		
		A _S -0.02 III		
	5" Pit Floor	A _S -0.02 III		
AC	5" Pit Floor I-350 Required	Provided		
AC 1. 0.005A _g		-		

